A Sequence in Subdomain 2 of DBL1α of Plasmodium falciparum Erythrocyte Membrane Protein 1 Induces Strain Transcending Antibodies
نویسندگان
چکیده
Immunity to severe malaria is the first level of immunity acquired to Plasmodium falciparum. Antibodies to the variant antigen PfEMP1 (P. falciparum erythrocyte membrane protein 1) present at the surface of the parasitized red blood cell (pRBC) confer protection by blocking microvascular sequestration. Here we have generated antibodies to peptide sequences of subdomain 2 of PfEMP1-DBL1α previously identified to be associated with severe or mild malaria. A set of sera generated to the amino acid sequence KLQTLTLHQVREYWWALNRKEVWKA, containing the motif ALNRKE, stained the live pRBC. 50% of parasites tested (7/14) were positive both in flow cytometry and immunofluorescence assays with live pRBCs including both laboratory strains and in vitro adapted clinical isolates. Antibodies that reacted selectively with the sequence REYWWALNRKEVWKA in a 15-mer peptide array of DBL1α-domains were also found to react with the pRBC surface. By utilizing a peptide array to map the binding properties of the elicited anti-DBL1α antibodies, the amino acids WxxNRx were found essential for antibody binding. Complementary experiments using 135 degenerate RDSM peptide sequences obtained from 93 Ugandan patient-isolates showed that antibody binding occurred when the amino acids WxLNRKE/D were present in the peptide. The data suggests that the ALNRKE sequence motif, associated with severe malaria, induces strain-transcending antibodies that react with the pRBC surface.
منابع مشابه
Virulence in Plasmodium falciparum malaria: mechanisms of PfEMP1-mediated rosetting
Malaria is one of the most important infectious diseases in the world and the Plasmodium falciparum parasite is the causative agent of most of the severe cases. The pathogenesis of the disease is complex but sequestration and hence microvascular obstruction is associated with virulence of the parasite. Rosetting, the adhesion of a parasitized red cell (pRBC) to two or more non-parasitized RBC i...
متن کاملB-Cell Epitopes in NTS-DBL1α of PfEMP1 Recognized by Human Antibodies in Rosetting Plasmodium falciparum
Plasmodium falciparum is the most lethal of the human malaria parasites. The virulence is associated with the capacity of the infected red blood cell (iRBC) to sequester inside the deep microvasculature where it may cause obstruction of the blood-flow when binding is excessive. Rosetting, the adherence of the iRBC to uninfected erythrocytes, has been found associated with severe malaria and fou...
متن کاملPlasmodium falciparum Rosetting Epitopes Converge in the SD3-Loop of PfEMP1-DBL1α
The ability of Plasmodium falciparum parasitized RBC (pRBC) to form rosettes with normal RBC is linked to the virulence of the parasite and RBC polymorphisms that weaken rosetting confer protection against severe malaria. The adhesin PfEMP1 mediates the binding and specific antibodies prevent sequestration in the micro-vasculature, as seen in animal models. Here we demonstrate that epitopes tar...
متن کاملBinding of Subdomains 1/2 of PfEMP1-DBL1α to Heparan Sulfate or Heparin Mediates Plasmodium falciparum Rosetting
The capacity of Plasmodium falciparum parasitized erythrocytes (pRBC) to adhere to the endothelial lining in the microvasculature and to red blood cells (RBC) is associated with the virulence of the parasite, the pathogenesis and development of severe malaria. Rosetting, the binding of uninfected RBC to pRBC, is frequently observed in individuals with severe malaria and is mediated by the N-ter...
متن کاملAllelic Diversity of the Plasmodium falciparum Erythrocyte Membrane Protein 1 Entails Variant-Specific Red Cell Surface Epitopes
The clonally variant Plasmodium falciparum PfEMP1 adhesin is a virulence factor and a prime target of humoral immunity. It is encoded by a repertoire of functionally differentiated var genes, which display architectural diversity and allelic polymorphism. Their serological relationship is key to understanding the evolutionary constraints on this gene family and rational vaccine design. Here, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013